

JXBS-3001-TH-RS

Temperature Humidity Sensor User Manual

RS485 Modubus

Version: 2.0 Date: 2020-1-1 Status: Released

www.jxct-iot.com

I. BRIEF INTRODUCTION

1.1 Product Overview

This product adopts high sensitivity photosensitive probe, the signal is stable and the precision is high. It has the characteristics of wide measurement range, good linear degree, good waterproof performance, convenient use, easy installation and long transmission distance.

1.2 Primary Parameters

PARAMETERS	TECHNICAL SPECIFICATIONS
POWER SUPPLY	12-24V DC
POWER	0.4W
OUTPUT SIGNAL	RS485
RESPONSE TIME	≤15S
LONG-TERM STABLE TEMPERATURE	≤0.1°C/year
LONG-TERM STABILITY OF HUMIDITY	≤1%y
TEMPERATURE RANGE	-40℃-80℃
HUMIDITY RANGE	0-100%RH
TEMPERATURE RESOLUTION	0.1℃
HUMIDITY RESOLUTION	0.1%RH
POWER CONSUMPTION	≤0.15W(@12V DC , 25°C)
WORKING PRESSURE RANGE	0.9-1.1atm

PRODUCT TYPE	PROBE TYPE	TEMPERATURE ACCURACY	HUMIDITY ACCURACY
-S20	SHT20	±0.3 ℃	±3-7%
-S30	SHT30	±0.3 ℃	±2-4.5%
-S31	SHT31	±0.3 °C	±2%
-S75	SHT75	±0.3 °C	±1.5-3%

1.3 Probe Parameters and Selection

1.4 Temperature Parameters (-S20)

CONTENT	Minimum	Typical value	Maximum	Unit
Resolution (14bit)	-	0.01	-	C
Linear deviation	-	±0.3	Figure 1	°C
Repeatability	-	±0.1	-	°C
The scope of work	-40	-	125	°C
Response time (63%)	5	-	30	secon d
Long-term drift	-	<0.04	-	℃/ yea r

Figure 1 Temperature measurement accuracy at different temperatures

As shown in the above table, the maximum deviation is within ± 0.5 in the range of 5-60 degrees Celsius, and the deviation increases with less than 0 degrees Celsius and greater than 60 degrees Celsius.

CONTENT	Minimum	Typical value	Maximum	Unit
Resolution (12bit)	-	0.04	-	%RH
Linear deviation	-	±3.0	Figure 2	%RH
Repeatability	-	±0.1	-	%RH
The scope of work	0	-	100	%RH
Response time (63%)	-	8	-	second
Long-term drift	-	<0.5	-	%RH /year
Hysteresis	-	±1	-	%RH
Non-linearity	-	<0.1	-	%RH

1.5 Humidity Parameter (-S20)

DRH (%RH)

As shown in the above table, the deviation increases with a typical deviation of $\pm 3\%$ in the 20-80% RH range, less than 20%, and greater than 80% humidity.

1.6 Influence of temperature on humidity measurement (-S20)

Figure 2 describes the effects of different humidity conditions on the humidity measurement. The following table describes the effects of different temperatures on the humidity measurement accuracy.

Figure 3 Relative humidity at different temperatures

As shown in the above table, in the range of 15 to 55 degrees Celsius and 30 to 80 degrees of humidity, the accuracy of humidity is the highest, which is $\pm 4.5\%$. In other cases, the humidity increases.

1.7 System frame Diagram

FIGURE 4 SINGLE-ENDED

II. HARDWARE CONNECTIONS

2.1 CHECKING BEFORE INSTALLATION

Check the list of devices before installation:

TABLE 1List of Devices

Name	Number
THE SENSOR DEVICE	1
12V POWER ADAPTER (Optional)	1
WARRANTY CARD / CERTIFICATE	1
THE USB TO 485 DEVICE (Optional)	1

2.2 Interface Description

The power interface is wide voltage input 12-24V. When connecting the 485 signal cable, note that the A/B lines cannot be reversed. The addresses of multiple devices on the bus cannot conflict.

2.2.1 Economic Sensor Wiring

FIGURE 6 PHYSICAL PICTURE

		C .
	Line Color	Description
Power	VCC	Power supply Positive(12-24V DC)
	GND	Power supply Negative
Communication	485-A	485-A
	485-B	485-B

TABLE 2 Wiring Sequence

Wiring method: After loosening the screw, insert the wire into the crimping hole from the terminal, and then tighten the screw to lock the wiring material.

2.2.2 LCD display shell wiring

			ing bequeitee	
NO.	Instructions	NO.	Instructions	
1	Power supply Positive (12-24VC)	5	485-A	
2	Power supply Negative	6	485-B	
7	Sensor Power supply Positive	3	SCL	
8	Sensor Power supply Negative	4	SDA	

FIGURE 7 PHYSICAL PICTURE

TABLE 3 Wiring Sequence

Note: When the sensor is built in, 3/4/7/8 is idle.

Use a screwdriver to press down on the yellow buckle. Insert the wire into the crimping hole and release the yellow buckle to lock the wire.

2.2.3 External Probe Sensor Wiring

FIGURE 8 PHYSICAL PICTURE

TABLE 4	Wiring	Sequence
---------	--------	----------

	Line Color	Description
Power	Brown	Power supply Positive (12-24V DC)
FOWEI	Black	Power supply Negative
	Yellow	485-A
Communication	Blue	485-B

Precautions: Please take care not to take the wrong line sequence, the wrong wiring will cause the equipment to burn.

The factory default is to provide 0.6 meters long wire rods. Customers can extend the wire rods as required or sequentially.

Note that there are no yellow lines in the wire sequences that may be provided in some factory batches, in which case the gray line is equivalent to replacing the yellow line.

2.3 Installation

The economical version of the sensor is in the form of a standard rail mount, which snaps the back side of the sensor onto the rail.

The 86-shell wall-mounted large-screen sensor adopts the installation form of the inverted hoist hole, and the customer can mount the screw with a distance of 60mm.

The wall-mounted king-shaped shell is a wall-mounted installation. The installation holes are located at the middle positions on both sides of the device. The installation aperture is less than 4mm, and the hole distance is 105mm. It can be installed using a 3mm self-tapping screw.

III. CONFIGURATION TOOL INSTALLATION

We provide **CONFIGURATION TOOL**, which can be easily used to test our sensor device.

3.1 Sensor Access Computer

Transmitter can be connected to PC with the RS485 to USB adapter. You can check the COM port number through Device Manager (right click My Computer).

3.2 How To Use Configuration Tool

ensor Management V3.	6				
Sensor Ma	anagement	Software			-0
oo2: O ppm	Soil Moisture	Atmosphere Ombar		System Configure	
Humidity	Soil Humidity	Analog1		Baud 9600 ~ Addr 1 +	Connect
Temperature	Illuminance	Analog2		Auto Find De	vice
0 °C	0 Lux	Council the electron	×	Communication Settings Set Baud 9600 ~	Set
Gas Concentratio	n pm	NO: 1Baud rate:4800		Set Addr 1	Set
			per1:	Lower1:	R ¥
			Upper2:	Lower2:	R ₩
Type			Deviation1	Deviation2:	R ¥
Normal O Analog	○ Gas ○ Atmosphere	○ CH20	Drop1:	Drop2:	R ¥
○ Illuminance	○ The 02				

Please note that this software can only test one device at the same time. After connecting the physical device, click the **CONNECT** button to read the information. In the UNCONNET state, you can modify BAUD and ADDR in COMMUNICATION SETTINGS.

Under the software, different check boxes can be selected according to different situations. For example, you can choose the GAS option to test the RS485 OXYGEN SENSOR, you can choose the NORMAL option to test the RS485 TEMPERATURE AND HUMIDITY SENSOR.

IV COMMUNICATION PROTOCOL

4.1 Communication Basic Parameters

	TABLE 5 Communication Basic Parameters	
PARAMETERS	CONTENT	

Protocol	Modbus RTU
Data bits	8 bit
Parity bit	No
Stop bit	1 bit
Error checking	CRC (redundant loop code)
Baud rate	2400 bps/ 4800 bps/ 9600 bps can be set
	factory defaults to 9600 bps

For more information about MODBUS RTU please visit the website"www.modbus.org ".

4.2 Register Address

TABLE 6 Register Address

Register Address	Plc Configuration Address	Content	Operation	
0000H	40001	Humidity(unit 0.1%RH)	Read-Only	
0001H	40002	Temperature(unit 0.1°C)	Read-Only	
0100H	40101	Device Address (0-252)	R/W	
0101H	40102	Baud Rate (2400/4800/9600)	R/W	

4.3 Communication example

4.3.1 Read Device Address 0x01's Soil Temperature And Humidity

Address Code	Function Code	Start Address	Data Length	CRC_L	CRC_H
0x01	0x03	0x00,0x00	0x00,0x02	0xC4	0x0B

TABLE 7 Inquiry Frame

Answer Frames

TABLE 8

Temperature: FF9BH (hexadecimal) =-101=> temperature =-10.1°C

Humidity: 292H(hexadecimal) =658=>humidity =65.8%RH

Address Code	Function Code	Number Of Valid Bytes	Humidity Value	Temperature Value	CRC_L	CRC_H
0x01	0x03	0x04	0x02, 0x92	0xFF, 0x9B	0x5A	0x3D